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1.Introduction    

Within the short period of about three years, graphene, a one-atom thick layer of carbon 

atoms arranged laterally in hexagonal “honeycomb” carbon lattice, has risen from relative 

obscurity, to the status of an exciting and promising model system for two-dimensional solids 

[1-8] . This material has many exciting and unique properties, which set it apart from most 

other solid materials. While the various forms of three-dimensional elemental carbon, i.e. 

graphite, and diamond, have been known from the earliest history, its low-dimensional forms 

such as zero-dimensional fullerenes and related cage molecules, and one-dimensional carbon 

nanotubes were only discovered within the last 25 years, and the two-dimensional form of 

carbon, graphene, was isolated experimentally only a few years ago.  Graphene is obviously 

closely related to these carbon-based materials in other dimensions. The properties of 

graphene have been studied theoretically for about sixty years [9], and the single layer of 

graphene has been used as a model system in numerous theoretical studies [10-15] ; in view 

of the weak coupling between the graphite layers, the single layer is a reasonable starting 

point of theoretical examinations of graphite and other allotropes of carbon (see, for example, 

the book by Saito, Dresselhaus and Dresselhaus [16]). About twenty-five years ago, the study 

of graphene acquired a new significance when it was suggested that graphene represents a 

condensed matter analogue of quantum electrodynamics, in two spatial and the time 

dimensions [12-14]. Such theoretical considerations were not matched by experimental 

studies or verifications of these unusual predictions, since until very recently no preparation 

methods existed; indeed it was presumed that isolated graphene could not exist, as predicted 

by Landau for 2-dimensional solids in general in 1937 [17-19]. This has changed quite 

recently with the demonstration of exfoliated [20,21] as well as epitaxially grown single layer 

graphene [22-25], and a frenzy of activities has ensued, fueled by the observation of 

intriguing charge transport properties, such as a high carrier mobility, a weak dependence of 
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mobility on carrier concentration and temperature, and an unusual quantum Hall effect [1,2] 

which can even be observed at room temperature [26], ten times higher than in any previous 

2D electron system. 

These results demonstrate that the nature of charge carriers is unlike those in any other 

solid state system.  The properties arise from the structure of the graphene lattice and its 

electronic band structure; it results in a linear dispersion of carriers at the Fermi level, which 

implies that the speed of charge carriers in graphene is a constant, independent of momentum, 

as the speed of photons is a constant. The quantum mechanical description of the charge 

carriers in graphene is thus identical to the quantum mechanics of relativistic particles with a 

vanishingly small mass [12]. The properties of the charge carriers do not derive from their 

Fermi velocity, which is about 106 m/s, about 1/300 of the speed of light, but from the 

symmetry of the graphene honeycomb lattice [10].  Once the unusual transport properties of 

graphene were discovered, the theoretical tools to interpret the experimental data were thus 

already at hand, and consequently a rather comprehensive understanding of graphene’s 

unusual physics has been gained within a short time.

Many unusual transport properties result from the fact that the carriers have a vanishing 

effective mass, with repercussions that go well beyond traditional solid state physics, such as 

carrier tunneling through a potential barrier of any height, the so-called Klein paradox 

[27-29].  The carriers in graphene are described by the relativistic Dirac equation, yet they are 

charged particles which obey Maxwell’s equation, interacting through their charge - hence the 

name ‘“Dirac Fermions”. It is no exaggeration to state that this discovery has opened a new 

chapter in solid state physics. 

In order to get more insight into the electronic structure of graphene, which is the basic 

reason for its unusual behavior, a more detailed consideration of the band structure is 

important. The hexagonal lattice of graphene is shown in the top of Figure 1, with a two-atom 
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basis indicated by the diamond. The lattice thus has sublattices A and B; the 2D Brillouin zone 

with high symmetry points Γ, M, K and K’ are shown below the direct space lattice. Bonding 

in a graphene can be compared with its building block, a single benzene ring, where the in-

plane bonding is due to a bonds made of the px,y orbitals, while the remaining pz orbital, 

perpendicular to the plane and odd under inversion, forms the π and π* bands. The presence 

of two sublattices leads to two sets of bands that cross at the K point; the crossing is not 

inhibited because they belong to different irreducible representations of the space group. 

A tight-binding calculation of graphene’s bands B shown on the right-hand side of Figure 

1; it shows the deep σ-type bands and the π bands that cross the Fermi level at the K point, i.e. 

the boundary of the Brillouin zone. Near this point, the energy has a linear dependence on the 

wave vector, as is apparent from an enlarged section of the band structure with a small energy 

range and k vector near the K point. The dependence on the 2D wave vector k=(kx,ky) is 

conical as can be seen from the 3D rendition of the band structure in the bottom of Figure 1.

 If we denote the displacement of the wave vector from that corner point by δk = k - K, for 

δk·a  ≫ 1, where a is the lattice constant, the dispersion relation is

  

€ 

E  =  hv∂k  	

 	

(1)

where   

€ 

v  =  1
2

3τa /h 
  is about 106 m/sec, with τ the nearest neighbor hopping energy ( ~ 3 

eV), and a the lattice constant.

As mentioned above, the linear dispersion relation is not derived from a particular shape of 

the atomic potentials, rather, it directly stems from the symmetry of the hexagonal, two atom 

basis lattice of graphene (Figure 1a) as shown by Slonczewski and Weiss [10]. It implies an 

energy-independent group velocity of charge carriers, which thus have zero effective mass. It 

was noted by DiVincenzo and Mele [12] and Semenoff [13] that such particles are described 

by the Dirac equation of relativistic quantum mechanics,
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an equation that in fact goes back to McClure [30]. Here ΨA and ΨB give the amplitude of the 

wave function on the A and B sublattices. The differential operator couples ΨA and ΨB but 

not ΨA to itself.

Equation 2 can be written in a more compact form as 

€ 

vp•σΨ  =  EΨ    	

	

 	

(3)

with   

€ 

p  =  − ih( ∂∂x
, ∂∂y

)  
 the momentum operator in the x-y-plane and  

€ 

σ  =  (σ x ,σ y,σ z )  

the vector of Pauli matrices acting on the spinor  

€ 

Ψ =  (ΨA ,ΨB ) . This spin described by the 

Pauli matrices is called “pseudospin” to distinguish it from the real electron spin [15,31].
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The 

two-dimensional Dirac equation describes states with wave vector k in the valley centered at 

the corner K. The valley at the opposite corner K’ produces an independent set of states  

€ 

Ψ =  (ΨA
ʹ′,ΨB

ʹ′) . These satisfy the same Dirac equation with px  -> - px. The dispersion relation 

is depicted in a 3D rendition in the bottom of Figure 1 [32]; the crossing points of the bands 

 

Figure 1: a) Lattice of graphene, with the two-atom basis as indicated by the 
parallelogram; the 2D Brillouin zone is shown below, with points of high 
symmetry marked.  b) Tight binding band structure of graphene along the high 
symmetry directions.  c) 3D rendition of the shape of the π bands, showing the 
Dirac points where the valence and conduction bands meet at the K point of the 
Brillouin zone). From Bostwick et al. [32]
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and the conical dispersion can be clearly seen. We will frequently return to the discussion of 

the specific properties of the graphene band structure in the following sections.

Graphene shares some of its exciting properties with carbon nanotubes, which are difficult 

to prepare and investigate as single entities on a large scale ensemble of identical tubes. Thus 

attempts were made to prepare graphene already in 2001 using epitaxial growth on silicon 

carbide [33] by vacuum graphitization, a process hat had been known long before to result in 

ordered layers of graphite with only a few layers thickness [34]. Unusual transport properties 

suggesting a new quantum Hall system were derived from Shubnikov-de Haas oscillations, 

and epitaxial growth was envisaged as a route towards graphene-based nanoelectronics [35].

The experimental breakthrough that brought experimental verification to the theoretical 

predictions, and has led to the intense research effort into the basic properties and applications 

of graphene, has been the preparation of single layer and few layer graphene (FLG) by what is 

termed micro-mechanical cleavage of bulk graphite; in more simpler terms, this involves 

rubbing a piece of graphite on a suitable substrate [20], mostly SiO2 on a silicon wafer, a 

rather unsophisticated technique it may seem. The decisive part then is to identify a single 

layer graphene flake with dimensions up to ∼100 μm among the thousands of thicker flakes 

surrounding the desired sample. The important and serendipitous finding of the Manchester 

group was that a single layer of graphene becomes visible in an optical microscope if placed 

on top of a silicon wafer within a specific oxide layer in a very narrow range of thicknesses. 

The interference pattern produced by films even only a monolayer thick induces a faint but 

visible contrast [36]. This is a most fortunate situation since other methods of screening the 

thousands of flakes in a “rubbed” or “drawn” area on a substrate, such as electron microscopy, 

cannot distinguish between single layer and thicker layer films. Geim and coworkers have 

given detailed descriptions of ways to identify single layer graphene [36], no doubt an 

important help and stimulus for the rapid spread of experimental efforts and progress in the 
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field. An enormous advantage of oxidized silicon as substrate is that, once the film is 

contacted, a field-effect device is made (using the silicon substrate as a back contact) that can 

be used in many different transport experiments, and even in proof-of-concept electronic 

devices, because it provides the possibility to vary the carrier concentration over a wide range. 

Moreover, the exfoliation technique permits the preparation of suspended graphene 

membrane, providing what the authors call “the thinnest conceivable object”, offering many 

exciting possibilities for research [37]. 

The “rubbing” technique of preparing exfoliated graphene, while central to current 

investigations of many properties of graphene, produces samples that do not have the right 

properties for a number of experimental techniques though - samples are small, and the oxide 

substrate may be disadvantageous for probes involving charged particles. Moreover, it has 

been shown that graphene flakes on SiO2 exhibit a wavy mesoscopic structure [37], such that 

structural studies are adversely affected. Also, graphene flakes on SiO2 are not likely to be 

useful for large scale and general device production applications, or such experimental probes 

that require larger sample sizes. Epitaxial films of graphene, grown by decomposition of 

hydrocarbons on transition metal surfaces have been known for some time [38-43], and these 

show a very high structural quality [44,45], but they probably cannot be used for transport 

studies; also, there is a likelihood of a strong interaction of the carbon π states with the 

transition metal d states, affecting the unique graphene band structure. 

One method that does produce large scale, epitaxial and electronically decoupled graphene 

films had been identified well before the present interest in graphene arose [22,34,35,46,47]. 

This methods relies on the thermally induced decomposition of the top layers(s) of a silicon 

carbide substrate; if done in a controlled manner, this leads to a removal of the topmost silicon 

atoms, leaving behind a carbon layer on the silicon carbide surface in which the substrate 

dangling bonds are saturated, such that no strong interaction between substrate and overlayer 
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occurs - see the following section for details. This and related methods probably offer a viable 

route towards an application of graphene in electronic devices, and with the demonstration of 

graphene-based transistors and other applications in exfoliated graphene [48,49], enormous 

efforts in thin film preparation of graphene are well under way.  Epitaxial graphene on suitable 

substrates thus is an exciting study object, since it offers experimental access to its electronic 

structure by a range of techniques not applicable to graphene flakes such as photoelectron 

spectroscopy, but also when considering applications. 

For a truly 2-dimensional systems such as graphene, which in fact happens to be a model 

system for a 2D solid, existing even as a freely suspended sheet of atoms [50], the application 

of surface-related techniques such as low energy electron diffraction (LEED), scanning 

tunnelling microscopy (STM) and spectroscopy (STS), valence and core level photoelectron 

spectroscopy etc. is a natural consequence. Not only do these techniques yield important data 

on the physical properties of this material, they can also be used to elucidate the growth of 

graphene from the initial states up to the multilayer, and the interaction between the layer and 

the substrate. Such studies are generally performed in an ultra high vacuum environment, i.e. 

under clean and controlled conditions, and using epitaxial graphene on substrates such as 

silicon carbide or metals [3,33,51-55].  

This paper is organized as follows: the introductory section with a brief motivation for 

research into graphene, is followed by a discussion of “surface science” aspects of the 

preparation of graphene films on silicon carbide in section 2. Section 3 describes the 

characterization of single and few-layer graphene in terms of its electronic band structure, i.e. 

the path from a pure 2D system to the quasi-2D multilayer. The special case of the graphene 

bilayer is discussed in section 4, which also deals with the influence of doping on the charge 

distribution in the layers. The detailed shape of the bands near the degeneracy point, and the 

influence of many-body effects on the bands is presented in Section 5; a brief outlook 
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concludes the paper.

2. Preparation of epitaxial graphene on silicon carbide

The graphitization of silicon carbide became known shortly after the method of producing 

silicon carbide was discovered by Acheson. He observed that heating of silicon carbide to 

very high temperatures led to the evaporation of silicon and to the formation of graphite, a 

useful effect for lubrication purposes [56]. Early studies of silicon carbide surfaces in 

ultrahigh vacuum also showed that annealing of silicon carbide surfaces at temperatures 

above 1100 °C leads to a depletion of silicon in the surface, leaving behind carbon-rich 

surfaces [3,22,33,34,51,57-59]  which, when processing at sufficiently high temperatures and 

for a sufficiently long period of time, evolves into a closed layer of graphite. Layers can be 

prepared from thicknesses of a fraction of a monolayer to several layers [47]. Such layers 

have been studied using transport methods, demonstrating that they are useful as electronic 

materials and may be used in electronic devices [3,35].  SiC possesses many polytypes; in the 

experiments both 6H-SiC and 4H-SiC material have been used as substrates. An important 

aspect of graphene growth on silicon carbide appears to be the structure of the starting surface 

[60]. Since the hexagonal surface is a polar one, there are two choices, either the silicon-

terminated SiC(0001) or the carbon-terminated SiC(000-1) surface.  The two polar surfaces 

exhibit considerable differences concerning the growth of a graphene layer. On the carbon-

terminated surface, graphene can grow in multiple forms - in layers that are rotated ± 30 ° 

with respect to the SiC [10-10] surface azimuth, or a ± 2.2° rotation [61]; structural coherence 

over regions of 90 micrometer have been reported in such layers. It had been thought that 

multilayers of graphene on SiC(000-1) exhibit a high degree of azimuthal disorder because of 

the streaks in the LEED spots from such a surface [62]. However, it appears that this is not a 
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random rotational disorder; x-ray diffraction has shown that the streaking is due to a 

combination of the above orientations with respect to the substrate lattice which make 

adjacent islands or layers in stacks of graphene films commensurate [61]. This ordering, 

resulting in rotational stacking faults, then explains the puzzling result that multilayers of 

graphene on SiC(000-1) exhibit the same high mobilities as single layers, and in many 

respects behave as single layers. Apparently the stacking faults decouple the layers such that 

the symmetry-reducing action of layer stacking such as in an in-registry situation (as in 

graphite) does not occur. 

This result may be of great significance for the use of multilayer stacks in devices; 

however, any kind of rotational disorder or misalignment of detrimental to use of epitaxial 

graphene layers in experiments that require large scale patches of graphene which are well-

oriented with respect to one another. Fortunately, the preparation of graphene layers by 

vacuum graphitization or ex-situ treatment [63] of the silicon-terminated SiC(0001) surface 

actually results in such surfaces when prepared under appropriate conditions. For the 

preparation of the starting surfaces, two ways for obtaining atomically flat and well-ordered 

surfaces exist. One method employs annealing of the surface in ultrahigh vacuum in a flux of 

silicon at a temperature of 950 C, whereby oxygen is removed and the silicon-rich (3 x 3) 

surface is obtained; at 1050 C the Si-rich (√3 x √3)R30° structure is then formed, which 

converts into the carbon-rich (6√3 x 6√3)R30° phase at 1150°. This latter phase is the 

important intermediate layer between the SiC substrate and the decoupled graphene layer as 

discussed in more detail below. Further annealing then leads to single and few layer graphene 

with (1 x 1) periodicity. The low energy electron diffraction (LEED) patterns corresponding to 

this sequence of preparation steps is shown in Figure 2.  The second method relies on ex-situ  

etching of the SiC substrates in a stream of hydrogen [33,35,47,55,64]. This results in surfaces 

which are covered by a silicate adlayer [65]. Annealing of this surface in ultrahigh vacuum 

results in desorption of oxygen and the formation of the Si-rich (√3 x √3)R30° structure, 
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which then transforms into the carbon-rich (6√3 x 6√3)R30° phase as in the first method [66]. 

The result of such a hydrogen etching treatment are shown in the atomic force microscopy 

(AFM) images in Figure 2: the ex-situ hydrogen-etched surface is extremely flat and has 

regular large scale terraces [67]. This second method is used by many groups with good 

results. STM studies of graphene on the silicon-terminated SiC(0001) surface [3,68-70] show 

images with large areas with clear and distinctive patterns for the single and bilayer of 

graphene, such that these can be readily distinguished [70]. Figure 3a shows a constant 

current STM image of the graphitized SiC(0001) surface, which exhibits two distinct types of 

areas, labeled “1L” and “2L.” Hexagonal reconstruction patterns with a periodicity of 17.8±2 

Å are observed in both the 1L and 2L regions ( the unit cell is shown in Fig. 1a). This is 

attributed to the 6 x 6 reconstruction of the SiC precursor layer beneath the graphene and 
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Figure 2: Typical LEED patterns observed during various stages of single and few layer 
graphene growth on SiC(0001). Annealing of ex-situ hydrogen-etched SiC(0001) surfaces in 
vacuo leads to the Si-rich (√3 × √3)R30° structure. The effect of hydrogen etching is to 
remove polishing damage leading to extremely flat surfaces with micrometer sized terraces 
and a step height of single unit cell height, as shown by AFM. The steps are due to an 
unintentional miscut angle of less than 0.1 degree. From Bostwick et al. [67].



shows no sign of the long range buckling observed in suspended graphene flakes [37]. The 

spatial frequency of 1L and 2L regions in the STM images can be correlated with the relative 

abundance of 1L and 2L regions measured by ARPES as explained in detail in section 3, 

permitting an identification of 1L terraces as monolayer graphene and 2L terraces as bilayer 

graphene. The difference in the observed atomic structure between the single and the bilayer 

regions is attributed to the Bernal (A - B type) stacking of two graphene sheets on top of one 

another in the bilayer case, which leads to the observation of a triangular lattice, as in the case 

of highly oriented pyrolytic graphite HOPG, as also found by other groups. This is also 

consistent with recent observations from other groups [68].

Investigating the (6√3 x 6√3)R30° phase on silicon-terminated SiC(0001) is very important 

Figure 3: Constant current STM image of graphene/SiC. Monolayer and bilayer 
graphene regions are labeled “1L” and  “2L,” respectively. The 6 x 6  reconstruction 
unit cell is drawn for both types of terraces. b) and c) Constant current image showing 
atomic structure of monolayer and bilayer regions, respectively. Positions of carbon 
atoms are drawn. From Brar et al., [70]. d,e) STM images of SiC(0001) covered with 1 
ML graphene,taken at a large bias voltage of UT=−1.85 V IT =7 pA. The z scale is 
0.00–0.866 Å in d) and 0.00–0.83 Å in e) From Lauffer et al. [76].
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since it is thought to electronically decouple the SiC surface from the graphene layer. Several 

models have been put forward for this phase; one of them suggests that it is a single graphene 

layer weakly bound by dispersion forces onto the unreconstructed SiC(0001)-(1 x 1) phase 

[34,71] or onto the Si-rich (√3 x √3)R30° reconstruction [22,72,73]. The problem with a 

structural analysis of this surface is that its unit cell is too large to be handled by LEED 

surface crystallographic determination. STM images of a monolayer of graphene on SiC

(0001) are shown in Figure 3d and e.  Both images were obtained at a large bias voltage of 

UT=−1.85 V, where no atomic resolution is observed.  At such high tunneling voltages, the 

states contributing to the image are not the electronic states of the graphene layer, but the 

underlying SiC surface is imaged, [68], which is covered by the (6√3 x 6√3)R30° 

reconstruction [55], previously studied by STM. [74]. Despite the fact that the reconstruction 

has a (6√3 x 6√3)R30° periodicity, the periodicity seen in the STM images shown is (6x 6), in 

agreement with previous reports [68,70,75].  Recently, it was shown that a careful imaging of 

the clean (6√3 x 6√3)R30° reconstruction leads to images where the true periodicity is visible 

[74]. It is evident from the images shown in Fig. 3 d and e that the reconstruction is not 

perfectly regular but spreads somewhat in a lateral position and an apparent height [76].  

Other than that, the surface appears to be flat and homogeneous even on the large scale image 

shown in Fig. 3d. 

Insight regarding the properties of the (6√3 x 6√3)R30° phase can be gained from core 

level spectroscopy, not only through the observation of surface core level emission which may 

give evidence of charge transfer between differently coordinated atoms in the surface region 

[77], but also since the position of the Fermi level at the surface, the amount of band bending 

and the Schottky barrier height may be inferred from such data. The carbon 1s core level 

spectrum has three components, one from bulk SiC and two surface-related lines S1 and S2 

(Figure 4a; only S2 is indicated, S1 roughly coincides with the graphene-derived peak at 

284.75 eV), which diminish in intensity as the graphene layers builds up. From the intensity 
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behavior with excitation energy ħω (i.e. change of surface sensitivity) it appears that the 

carbon species giving rise to the two lines S1 and S2 are located in the same layer; such data 

also suggest that the layer in which these atoms reside is only one atom thick. Emtsev et al. 

interpret the (6√3 x 6√3)R30° phase on the basis of these findings as a single, graphene-like 

layer with an intact in-plane, σ-type bonding, but in which a strong interaction with the pz 

orbitals and the SiC substrate occurs [55]. This layer is devoid of states at the Fermi level and 

thus acts as passivation layer for the SiC substrate, such that subsequently growing layers 

exhibit properties which appear, except for the doping discussed below, practically identical to 

exfoliated single and few layer graphene. For a use in devices, the band alignment and 

transport barriers between epitaxial graphene and the silicon carbide substrate need to be 

known. Such information has also been obtained from core level spectroscopy [47,78] for few 

layer graphene on n- and p-type SiC, and for n-type for the silicon and carbon-terminated 

surface. Using previously gathered information about the position of the C 1s core level of 

SiC with respect to the valence band maximum Ev [47] one can derive the position of EF at 

the interface with respect to the top of the valence band Ev as indicated by the top energy 

scale in Figure 4 a). This leads to the band diagrams shown in Figure 4b [55].  Since the 

barrier for electrons on 6H-SiC(0001) is rather small (0.3±0.1 eV), and the valence band 

offset between different SiC polytypes is basically zero, the authors estimate that this barrier 

is increased by 0.3 eV to 0.6±0.1 eV when using n-type 4H-SiC(0001). The Schottky barrier 

is also strongly face specific [55], being much larger (1.4 eV) on the C-face of n-type 6H-SiC 

than on the Si face, a fact which demonstrates the influence of the difference in the dipole 

layer on these surfaces. This could be an advantage of graphene on carbon-terminated SiC

(000-1) in a device context.   

The nature of the electronic states of the (6√3 x 6√3)R30° surface becomes apparent from 

photoelectron spectroscopic data such as shown in Figure 4 c) and d). Seyller and coworkers 

have studied the changes in electronic structure in going from the SiC(0001)-(6√3 x 6√3)R30° 
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phase to the first graphene layer [55]. The photoelectron intensity maps in Figure 4 c) show 

the entire valence band structure of this phase, with a strongly dispersing band (marked σ ) at 

binding energies from about 23 eV to about 8 eV below EF, broken by a hybridization gap at 

14 eV. The region from about 12.5 eV to 2.5 eV is dominated by emission from the bulk 

Figure 4: Photoelectron intensity map vs. binding energy and parallel momentum of 
(a) C 1s core level spectra of SiC(0001)-(6√3 × 6√3)R30° as a function of graphene 
film thickness. (b) Band alignment at the SiC-graphene interface. c) angle-resolved 
photoemission images of the SiC(0001)-(6√3 × 6√3)R30° and (d) graphene on top of 
SiC(0001)- (6√3 × 6√3)R30°, respectively; see text. From Emtsev. et al. [69].
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valence bands of silicon carbide, and some hardly dispersing features at 1.8 and 0.6 eV below 

EF, which are related to surface emission. The right panel (d)  shows this region for a 

graphene layer on SiC(0001). The region between 23 and 14 eV shows strong similarities 

with that recorded from the (6√3 x 6√3)R30° phase; the dispersing feature is assigned to the 

graphene σ bands [54]. From the similarity in band shape the authors infer that the (6√3 x 

6√3)R30° phase contains sp2 bonded carbon atoms with a carbon-carbon distance comparable 

to that in graphene. The region from about 8 eV right up to the Fermi level exhibits the 

strongly dispersing π band in the graphene layer, which is the one whose dispersion close to 

EF determines its transport properties. By comparison, it is obvious that a graphene-like π-

band is not developed in the (6√3 x 6√3)R30° phase. Instead, broad structures are seen, the 

edge of which follows, at least over part of the range of the π band, the expected shape, but in 

which zone folding effects seem to occur also. Moreover, there are no occupied states at the 

Fermi level. These observations suggest an interaction of at least part of the carbon pz orbitals 

with the dangling bonds of the SiC(0001) surface in the (6√3 x 6√3)R30° phase. A similar 

behavior was predicted by theory for H adsorption on free standing graphene [79]. This 

finding is in contradiction to the proposed weak van der Waals interaction of the carbon atoms 

in the (6√3 x 6√3)R30° phase [22,34,71,73]. Note that the (6√3 x 6√3)R30° phase, which 

exhibits a large scale “nano-mesh” with a diameter of the hexagonal subunits of about 20 Å 

shows a considerable disorder in STM, the origin of which is not yet clear [68,70]. This topic 

is important in the context of the observed n-type doping of graphene grown on silicon 

carbide discussed below. 

From the AFM images of the hydrogen-treated starting surface of SiC (Figure 2) and the 

STM images such as shown in Figure 3 one might conclude that the growth of graphene on 

silicon-terminated SiC(0001) leads to large, well ordered terraces. However, the large scale 

structural quality is limited by the lack of continuity and uniformity of the grown film [80-82]. 

On the Si-terminated (0001) basal plane, vacuum annealing leads to small graphene domains 
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typically 30-100 nm in diameter. The small-grain structure is due to morphological changes of 

the surface in the course of the formation of the (6√3 x 6√3)R30° phase [83]. Moreover, 

decomposition of SiC is not a self-limiting process and, as a result, regions of different film 

thicknesses coexist as shown by low-energy electron microscopy (LEEM) . In Figure 5a, an 

AFM image of a hydrogen-treated SiC surface is shown, with large scale well-ordered 

terraces; the step direction and width (on the order of 300-700 nm) of  the terraces are 

determined by the incidental misorientation of the substrate surface with respect to the 

crystallographic (0001) plane. The step height is 1.5 nm, which corresponds to the dimension 

of the 6H-SiC unit cell in the direction perpendicular to the surface (c-axis). On defect-free 

areas of the sample, the terraces typically extend undisturbed over 50 µm in length. After 

vacuum annealing, Fig. 5(b), the surface obviously undergoes significant modifications; it is 

now covered with small pits up to 10 nm in depth, and the original steps are hardly discernible 

any longer. This indicates that graphene growth is accompanied by substantial changes in the 

morphology of the substrate itself, leading to a considerable roughening. Because of this 

roughening, the graphene layer acquires an inhomogeneous thickness distribution as can be 

seen in the LEEM image shown in Fig.5(c). The irregularly shaped graphene islands are at 

most a few hundred nm in size. Moreover, monolayer graphene areas coexist with graphene 

bilayer islands as well as with uncovered regions of the (6√3×6√3) buffer layer. 

The small domain size and inhomogeneous distribution of film thickness obviously stems 

from the fact that the vacuum annealing process is taking place far from equilibrium. A 

different method of preparation, i.e. annealing of a SiC substrate in an atmosphere or argon at 

900 mbar has a dramatic improving influence on domain size and film homogeneity, as shown 

by the AFM image in Fig. 1(d). Step bunching is manifested by the formation of macro-

terraces. On average, their step width is larger by a factor of 5-8. The macro-steps which are 

running in the same crystallographic direction as the original steps increase in step height by 

the same factor and reach average heights of 8-15 nm. Parallel to the steps, uninterrupted 
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macroterraces more than 50 µm long have been observed. An analysis of the LEEM images 

taken with different electron energies shows that, except for narrow stripes at the edges, the 

large atomically flat macro-terraces are homogeneously covered with a graphene monolayer. 

The domain size of monolayer graphene appears to be limited by the length and width of the 

SiC terraces only. Narrower, darker regions at the downward edges of the terraces correspond 

to bilayer and in some cases trilayer graphene. This indicates that the nucleation of new 

graphene layers starts at step edges of the substrate surface.

There is a straightforward explanation for the differences between the vacuum- and argon-

annealed surfaces. The large roughness of the UHV annealed samples suggests that the 

surface is far from equilibrium [84], such that a transformation to a smooth morphology 

cannot be achieved under these conditions. The key factor in achieving an improved growth is 

the significantly higher annealing temperature of 1650°C that is required for graphene 

formation under argon at a pressure of 900 mbar as compared to 1280°C in UHV. Graphene 

formation is the result of Si evaporation from the substrate. For a given temperature, the 

presence of a high pressure of argon leads to a reduced Si evaporation rate because the silicon 

atoms desorbing from the surface have a finite probability of being reflected to the surface by 

collision with Ar atoms, as originally pointed out by Langmuir [85,86]. Indeed, in presence of 

the Ar atmosphere no sublimation of Si from the surface is observed at temperatures up to 

1500°C whereas Si desorption commences at 1150°C in vacuum [63]. The significantly higher 

growth temperature thus attained results in an enhancement of surface diffusion such that the 

restructuring of the surface is completed before graphene is formed. Ultimately, this leads to 

the dramatically improved surface morphology. The graphene layers prepared by annealing 

under argon also exhibit high electron mobilities, such that the improved film quality as seen 

by structural methods has a direct bearing on the transport properties. For studies of the 

electronic structure, such as using photoelectron spectroscopy, domain sizes on the order of 30 

- 100 nm are still perfectly useful since the domain size does not have a strong influence in 
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this size range. 
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Fig 5: Evolution of silicon carbide and graphene surface morphology through different 
preparation methods and steps. (a) Initial surface after H-etching imaged by AFM. The step 
height is 15 Å. (b) AFM image of graphene on 6H-SiC(0001) with a nominal thickness of 1 ML 
formed by annealing in UHV at a temperature of about 1280°C. (c) LEEM image of a UHV 
grown graphene film on SiC(0001) with a nominal thickness of 1.2 monolayers. The image 
contrast is due to the locally different layer thickness. Light, medium, and dark gray 
correspond to a local thickness of 0, 1, and 2 ML, respectively. (d) AFM image of graphene on 
6H-SiC(0001) with a nominal thickness of 1.2 ML formed by annealing in Ar (p=900 mbar, T= 
1650°C). (e) LEEM image of a sample equivalent to that of (d) revealing macroterraces 
covered with graphene up to 50µm long and at least 1µm wide. (f) Close-up LEEM image 
revealing monolayer coverage on the terraces and bilayer/trilayer growth at the step edges. 
From Emtsev et al. [63].



3: Evolution of the electronic structure: from single layer to few 

layer graphene   

The transport properties of a single layer of graphene, a bilayer, and a system consisting of 

more than two layers exhibit quite considerable differences [4]. Hence a study of the 

evolution of the electronic structure of these systems is important. The method of graphene 

layer growth on silicon carbide offers a straightforward way in which to prepare these systems 

under clean ultrahigh vacuum conditions, with the thickness of the layers being increased by 

prolonged annealing times, and to examine their properties using photoelectron and other 

spectroscopies. Moreover, one can derive information on layer interaction and the charge 

distribution among the layers by a comparison between the data and band structure 

calculations. We will concentrate on photoelectron spectroscopic investigations since these 

offer a detailed insight into the electronic structure. A technical comment is appropriate here. 

The angle-resolved photoelectron spectroscopic images of the valence level region shown 

here were all recorded with the modern type of electron energy analyzer which permits to 

record an entire range of angles, with high energy and angular resolution. This method of 

recording photoemission intensities has caused a revolution in the analysis of fine detail in the 

electronic structure of solids [87,88], for which the photoemission experiments of graphene 

are good example. 

The photoemission “image” of the entire valence band structure of single layer graphene is 

shown in Figure 6 a) along principal directions of the graphene Brillouin zone (BZ) (Figure 1) 

[89].  For an analysis in terms of band structure calculations, let us first consider a simple 

single near neighbor (NN) tight binding (TB) model as presented by Saito [16] and 

generalized to third-nearest neighbor interaction by Reich [90]. The first-NN band structure 
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can be written in closed form as 

€ 

E(k)  =  
ε2p ± γ 0w(k)
1± s0w(k)

 
        (4), 

where  

€ 

w(k)  =  1+ 4cos( 3aky /2)cos(akx /2) + 4cos2(akx /2   (5). 

Here, γ0 and s0 are the nearest neighbor (NN) hopping and overlap integrals, respectively, and 

ε2p is chosen to adjust the Fermi level EF to the experimental value relative to ED. A 

systematic fit of the bands along the principal directions is shown in Figure 6a). Since for 

clean graphene, the states above the Dirac energy ED are mostly unoccupied, the fit is only 

taken over the bands below ED. The first-NN tight binding fit describes the overall band with 

reasonably well. However, the detailed curvature of the experimental bands is not well 

represented by this calculation, and neither are the energies of the bottom of the π band or of 

the saddle point at the M point of the BZ. This is because additional nearest neighbor hopping 

and overlap must be considered to get a more accurate fit.

Reich et al. have evaluated the band structure from first principles, and have constructed a 

third-NN tight binding model as a fit to the first principles calculation [90]. Their model 

(dotted line) is shown for comparison to the data in Figure 6(a), which has been aligned to the 

bottom of the π bands at Γ. This model underestimates the observed bandwidth (below ED) by 

around 11%. A similar mismatch has also been seen for graphite, which was attributed to self-

energy effects due to electron–electron interaction [91]. In order to present a more useful tight 

binding fit, this band widening, and other deviations of the bands from Reich’s model, are 

included in an empirical fit of the bands to the graphene measurements (Figure 6(a), dashed 

and full lines) [89]. This fit is seen to be quite satisfactory throughout a wide range of 

energies, and captures not only the bandwidth but also matches the detailed shape of the 

bands. This good agreement comes at the expense of having a rather larger hopping parameter 

(γ0 = −5.13) than generally expected.
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Consider now the set of photoemission intensity distributions as a function of energy and 

wave vector k|| for different thicknesses of the layer shown in the bottom part of Figure 6 

[54].  The photoemission intensity distribution for the single graphene layer is shown on the 

bottom left-hand side. With reference to the calculated band structure (in Figure 1, and also 

indicated as dashed lines in Figure 6), the first thing to notice is that instead of showing two 

branches of bands that intersect at the degeneracy Dirac point ED, only one band is visible. 

This phenomenon was explained by Shirley et al. by considering the transition matrix 

elements involved in the respective transitions [92]. Depending on the direction of k|| along 

which data are taken, the band that has almost no intensity in Figure 6 b) can be “switched” 

on or off. This effect can be put to an important use in analyzing the shape of the bands in 

detail. While a broadly linear dispersion predicted from the calculations is shown in the data 

set for the single layer in Figure 6 b), it is also obvious that there are small deviations from 

this shape in the region within about 200 meV below EF, and near the Dirac point; this point 

will be dealt with in section 5. The patterns for a bilayer of graphene differs from that of the 

single layer in that a gap opens up, and two sets of π bands occur, which is plausible because 

of the interaction between the layers. This happens for the three-layer situation, where three 

bands occur, and finally for the four-layer situation; ultimately the entire range of bands will 

be covered by bands in bulk graphite. The evolution of bulk bands can be followed in very 

fine detail here, in a similar fashion as observed in thin films of metals where quantum well 

states are formed from the bulk bands due to electron confinement in the direction normal to 

the surface [93,94]. The splitting between the highest and lowest π bands increases with the 

number of layers, and for a four-layer film of graphene [Fig. 6(d)] it is close to that of bulk 

graphite, about 0.7 eV. There is a gap between the π and π * bands in the bilayer [Fig. 6(c)] 

due to the inequivalent on-site Coulomb potentials in each layer [52], an effect which will be 

explained in section 4.  The graphene bands was modeled within a tight-binding (TB) 

approach by Ohta et al. to interpret the experimental π bands in Figure 6 b - e). They took into 

 23 



account the different possible stacking sequences, and different on-site potential energies, 

since this turned out to be important for a satisfying modeling of the data. The Hamiltonian 
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Figure 6 a) Experimental and tight binding band structures for a single layer of graphene. 
The bands for the principle directions of the graphene Brillouin zone (see Figure 1) are 
shown for as greyscale images (darker = more intense). The best-fit tight binding bands are 
shown for one and three-NN models (dashed and solid, respectively). The third-NN
model by Reich is shown for reference (dotted lines) From Bostwick et al., [89]. (b-e) The π 

and π* bands near EF for 1 to 4 graphene layers, respectively. k= 1.703 Å-1 corresponds to 
the K point, the corner of the hexagonal Brillouin zone. The Γ point is at k =0 Å-1, while the M 
point is at -2.55 Å-1. The dashed lines are from a calculated tight binding band structure, with 
band parameters adjusted to reproduce measured bands. Red and orange lines are for 
Bernal-type (ABAB and ABAC) stackings, while blue lines are for rhombohedral-type 
stackings. From Ohta et al. [54].



was generalized from Refs. [95], [96] as   
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       (7)

Here Ei is the on-site Coulomb energy for layer i, π =  px + ipy, γ1 is the interlayer hopping 

integral, v is the band velocity, and s = 0 for Bernal (ABA. . . ) and 1 for rhombohedral 

(ABC. . . ) stacking. The Hamiltonian operates on the layer subspace i = (1, 2, . . . N)  while 

the 2 x 2 operators α and β act on the (A,B) sublattice sites of the same or adjacent layers, 

respectively. The energy scale is defined such that EF = 0. The Hamiltonian can be readily 

generalized to arbitrary stacking orders (e.g., ABAC) by suitable rearrangements of the 

coupling operators βs. It is well known that ABA and ABC stackings for graphene are 

energetically close, and stacking faults are commonly found in highly ordered pyrolytic 

graphite [97]. For samples with mixed stacking, it was assumed that the on-site Coulomb 

potentials do not depend on stacking sequence, and that they change monotonically across the 

film with the same sign [96]. Given that the potential must decay in a monotonic fashion, this 

considerably constrains the tight binding parameters. For trilayer graphene [Fig. 6(d)], two 

sets of π bands are found, resulting from different stacking sequences. The red (light gray) 

and blue (dark gray) dashed lines indicate TB bands with Bernal and rhombohedral stacking, 

respectively. The effect of different stacking sequences is most apparent for the middle π band 

near EF = 0.5 eV, but is also seen in the upper and lower π bands. The situation is somewhat 

different for the four-layer film shown in Fig. 6(e). The red and orange (light gray) dashed 

lines are for Bernal-type stacking, ABAB and ABAC, respectively. The blue (dark gray) 

dashed lines are for rhombohedral-type stacking, ABCA and ABCB. Four π bands are well 
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reproduced by assuming Bernal-type stacking, with the additional weak interspersed 

photoemission intensity suggesting minor contributions from rhombohedral-type stackings. 

The dominance of Bernal-type stacking for a four-layer film contrasts with the coexistence of 

Bernal and rhombohedral stacking in the three-layer film, and suggests the role of the second 

nearest neighbor in stabilizing Bernal stacking in bulk  graphite.  

The clarity with which the number and shape of the π bands can be determined in 

photoemission from graphene gives access to details of the interlayer coupling and screening 

effects in graphene. The bands in Figure 6 were fitted on the basis of the tight binding model 

above, with the results for a best fit of the bands for the parameters given in Table 1. The 

resulting interlayer hopping integrals γ1 for multilayer graphene are significantly larger than 

those of bulk graphite. In bilayer graphene, the interlayer hopping integral is reported to 

increase upon increasing carrier concentration [98]. This suggests that the larger interlayer 

hopping integral is similarly caused by the higher carrier concentrations in these layers which 

is caused by doping from the substrate (section 4).  

The simple shape of the graphene band structure makes it possible to evaluate the total 

 26 

N v n ED E1 E2 E3 E4 ! 1

106 m/s (eV)

1 1.10 6.0 -0.44

2 1.05 8.1 -0.30 -0.24 0.48

3 1.06 8.0 -0.21 -0.34 -0.16 -0.14 0.44

4 1.06 7.7 -0.15 -0.37 -0.10 -0.06 -0.05 0.44

∞ 0.91 ~0.35

Table 1. Tight binding band parameters to reproduce measured band structure for N  = 1 – 4 
layers graphene and graphite, (from Zhou et al., [62],  Charlier et al [113]). The electron 
density n is measured in 10-3 electron per 2D unit cell. From Ohta [54].



charge density n by measuring the π band Fermi surface areas. It was found to be almost 

invariant with film thickness or stacking order as shown in Table 1; this explains the observed 

decrease of EF - ED with the film thickness N [Figs. 6(b)–6(e)]. The deviation of the carrier 

concentration for different thicknesses is due to the accuracy of the fitting procedure. The 

extracted on-site Coulomb potentials may be used to estimate the screening length and the 

distribution of carrier concentrations. This is shown in Fig. 7 a), with the outermost layers’ 

potentials aligned to the zero-reference level. The error bar is estimated from the energy width 

of each π band at k|| = 1.65 A-1. Fitting the on-site potentials to a simple exponential decay 

allows a direct estimation of the interlayer screening lengths for three and four layers 

graphene, 1.4 and 1.9 Å respectively. The estimated screening lengths are smaller than the 

reported value for graphite (3.8–5 Å [12,99]); however, graphite has a much smaller carrier 

concentration than our films, and thus a weaker electron screening. One can estimate the 

charge density n across the layers N = 3 and 4 graphene layers using Poisson’s equation and 

the exponentially fitted potential profiles [Fig. 7 a)]. 

An oscillation of the carrier concentration is predicted for graphene layers [96]. However, 

the predicted carrier concentration oscillations are a higher-order correction to the results 

shown in Figure 7, considering the error bar on the experimentally determined potential 

profile. The carrier concentration decreases by about one order of magnitude for each adjacent 

layer Fig. 7 b). For the reported multilayer graphene devices [100], the screening length is 

expected to be larger than the present case because of lower carrier concentration; therefore, 

the carrier concentration profile is expected to be less steep. This suggests that the carriers in 

less-doped multilayers are distributed across several layers. While the electron potentials of a 

laterally confined surface state were previously extracted using a combination of ARPES and 

either scanning tunneling spectroscopy or iteratively evaluating wave functions [101,102], the 

evaluation of the stacking order, potential, screening length, and carrier concentrations solely 

from ARPES band structure measurements is unique to the present study. The present analysis 
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is only possible because the topology of the π states is very sensitive to the on-site Coulomb 

potential, and because of the very high energy and momentum resolutions of the experiment.   

Because of the simple band structure of graphene, and the fact that emission from the 

substrate is absent from the spectra in the region of interest, the transition from a purely 2D 

system to one that approaches the bulk structure can be followed in detail in a textbook-like 

fashion by measuring the dependence of photoemission intensity on the component of the 

wave vector normal to the surface. As expected in any true surface or 2D system, the π bands 

of a single layer do not display a dispersion with out-of-plane electron momentum k⊥ , since 

this is not a good quantum number (there is no interaction between atoms in the direction 

normal to the surface). In a layered bulk 3D crystal, however, the dispersion with k⊥ reflects 

the interaction strength between the layers. In a situation where a few layers exist, a stepwise 

dispersion will occur, similar to a splitting of levels in a hypothetical molecule as more atoms 

are added [103]. It was shown in Figure 6 b - e) that, with each added layer, an additional 

band occurs because of interlayer interaction. In the distribution of photoemission intensity 

with photon energy and hence k⊥, this is reflected in a modulation of the normalized 

photoemission intensity with photo-excitation energy, shown for the π bands at a binding 

energy of 1 eV below EF in Figs. 8 a) – d). Since there are large variations in photoemission 

intensity from extraneous factors such as monochromator transmission as well as cross 
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section changes, for the presentation in Figure 8 the photoemission intensity was normalized 

by dividing out the total intensity between EF and EF – 1.5 eV along the M-K-Γ direction at 

each photon energy. In such a display (termed constant initial state plot), the change in 

intensity reflects the evolution of the transition matrix element. In these data, the normal 

component of the initial state electron wave vector k⊥ inside the solid was derived on the basis 

of the free electron final state model through   

€ 

k⊥ =  2m
h2 Ekin +V0  

, with Ekin the measured 

kinetic energy, an inner potential, V0 = 16.5 eV [104] which can be determined independently 

from the periodicity of the details of  the dispersion in bulk graphite with photon energy, i.e. 

wave vector normal to the surface, and assuming that k⊥= 1.703 Å-1 at the K point.

The intensity pattern in Figs. 8(a)–(d), plotted as a function of k⊥ and k|| for the different 

initial states, will eventually evolve into a continuous dispersion curve as the number of layers 

increases toward true 3D bulk graphite. For single layer graphene, the photoemission cross 

section decays smoothly and monotonically [this slow variation is normalized out in the data 

of Fig. 8(e)]. For 2 to 4 layer graphene [Figs. 8(b)–2(d)], however, the photoemission cross 

sections oscillate with a periodicity of about 2.0 Å-1. This periodicity does not match with the 

  Figure 7: Potential and carrier concentration profiles of the multilayer graphene as a 
function of the layer positions. The electron potentials are shifted in the way that the 
potential of the outermost graphene layer is at zero. From Ohta et al. [54]
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reciprocal lattice vector of bulk graphite (0.932 Å-1), which includes two graphene layers in 

the unit cell, but is close to the reciprocal interlayer distance of graphite (1.86 Å-1). The 

slightly longer periodicity of the observed intensity oscillation may also imply a reduced 

interlayer distance in our films, although a precise assessment of the k⊥ periodicity requires 

careful estimation of the inner potential. A reduction in the spacing for bilayer graphene was 

previously attributed to the increased screening with carrier concentration [47]. 

The intensity oscillations with k⊥ for N ≥ 2 are similar to oscillations reported for 

quantized thin film states [93] and enhanced photoemission cross section for surface states 

[105-107] near vertical transitions of the bulk crystal. The lack of such oscillations for 

monolayer graphene results not just from the trivial lack of overlying graphene layers, but 

also due to a notable lack of coupling to the substrate [68] consistent with the lack of π bands 

in the underlying interface layer [55]. This suggests that the single layer graphene wave 

functions have ideal 2D character.  The above evaluation is the first of its kind in succeeding 

to derive the influence of stacking order, layer potential screening length and carrier 

concentration entirely from angle-resolved photoemission experiments in any kind of layered 

 Figure 8 (a-d) Photoemission intensity oscillation of π bands at EF-1 eV as a function of k|| 

and k momentum for 1-4 layers of graphene. The photoemission intensity is normalized by 
the angle integrated intensity between EF and EF-1.5 eV for each photon energy. From Ohta 
et al. [54].
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system. Also unique is the observation of the transition from the pure 2D character of single 

layer graphene to an increasing influence of interlayer coupling on the path to the evolution of 

a 3D band structure. The deviation of the interlayer hopping integral and screening length 

from those of graphite, caused by the altered carrier concentrations is also an interesting 

observation.  

4. Gap opening and doping influence in a bilayer of graphene  

A double-layer (bilayer) film of graphene has properties that set it distinctly apart from the 

single-layer as well as thicker films [95,108,109]. This can best be seen in the transport 

properties which are quite different. Consider the quantum Hall effect (QHE) data in Figure 9, 

which shows three types of QHE behavior observed in graphene. The first one, characteristic 

of single-layer graphene [1,110] shows up as an uninterrupted ladder of equidistant steps in 

the Hall conductivity σxy which persists through the neutrality (Dirac) point, where charge 

carriers change from electrons to holes (Fig. 9a). The sequence is shifted with respect to the 

standard integer QHE sequence by ½, so that σxy = ±4e2/h (N + ½) where N is the Landau 

level (LL) index and factor 4 appears due to double valley and double pseudospin degeneracy 

of graphene. This unusual „half-integer“ sequence is now well understood as arising from the 

QED-like quantization of graphene’s electronic spectrum in a magnetic field [111,112]. The 

existence of a quantized level at zero energy, which is shared by electrons and holes [Fig. 

4c)], is essentially everything one needs to know to explain the anomalous QHE sequence.  

Bilayer graphene exhibits an equally anomalous QHE [Fig 4b)] [108]; here, the standard 

sequence of Hall plateaux σxy = ± N 4e2/h is found, but the first plateau at N = 0 is missing, 

which also implies that bilayer graphene remains metallic at the neutrality point.  The origin 
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of this anomaly lies in the nature of quasiparticles in bilayer graphene, which are chiral, 

similar to the massless Dirac fermions in the single layer, but have a finite mass m ≈ 0.05m0. 

The Landau quantization of ‘massive Dirac fermions’ gives rise [109] to an additional 

degeneracy which leads to the missing zero-E plateau and the double-height step in Fig. 9 b). 

Finally, the normal integer QHE can be recovered in bilayer graphene by inducing a 

difference in the two layers, either through the electric field effect [Fig. 9b], in which the gate 

voltage not only changes the charge in the layers, but also induces an asymmetry between the 

two graphene layers, which results in a semiconducting gap [95,113], or through selective 

doping of one of the layers [52]. The resulting asymmetry eliminates the additional 

degeneracy of the zero energy Landau level and leads to the “normal” integer QHE sequence 

by splitting the double step into two (Fig. 9e). The electronic band structure changes 

  
Figure 9 a) The hallmark of massless Dirac fermions is that QHE plateaux in σxy exist at half 

integer values in terms of 4e2/h (from Geim and Novoselov [4]. b) In the anomalous QHE for 
massive Dirac fermions in bilayer graphene, σxy exhibits the standard QHE sequence with 
plateaux at all integer N of 4e2/h except for N = 0. The missing plateau is indicated by the red 
arrow. The zero-N plateau can be recovered after chemical doping, which shifts the neutrality 
point to high Vg so that an asymmetry gap (about 0.1eV in this case) is opened by the 
electric field effect (green curve). c–e, Different types of Landau quantization in graphene. 
The sequence of Landau levels in the density of states D is described by EN ∝ √N for 
massless Dirac fermions in single-layer graphene (c) and by EN ∝ √N(N–1) for massive Dirac 

fermions in bilayer graphene (d). The standard Landau level sequence EN ∝ N + ½ is 
expected to recover if an electronic gap is opened in the bilayer (e).
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significantly via the electric field effect, and the semiconducting gap can be tuned 

continuously from zero to 0.3 eV [108].  It is then interesting to study the electronic structure 

of the bilayer in detail, and to examine the influence of additional doping.

The difference in the valence band structure of single and multilayer graphene was already 

discussed in section 3, in terms of additional band formation beyond the single layer. As 

shown below, photoemission experiments on bilayer graphene can also be used to study the 

influence of layer charge concentration, through electron doping by “chemical” means, and by 

this method the band structure near the Dirac point can be modified. Let us first consider the 

influence of layer stacking and symmetry on the band structure of the bilayer in a model 

(Figure 10).  The graphene band structure is sensitive to the lattice symmetry. If the hexagonal 

layer structure is composed of nonequivalent elements, such as in boron nitride, the lateral, in- 

plane symmetry is broken, resulting in the formation of a large gap between π and π* states 

[114]. The symmetry can also be broken with respect to the c axis by stacking two graphene 

layers in Bernal stacking (the stacking fashion of graphite) as suggested by McCann and 

Fal’ko [109][Fig. 10 b)]. Because the unit cell of a bilayer contains four atoms, its band 

structure acquires two additional bands, π and π* states, in each valley split by interlayer (A-

B) coupling, and two lower energy bands. If the individual graphene layers in a bilayer are 

rendered inequivalent [Fig. 10 c)], then an energy gap between low-energy bands forms at the 

Figure 10: Electronic structure of a single (A), symmetric double layer (B), and asymmetric 
double layer (C) of graphene. The energy bands depend only on in-plane momentum 
because the electrons are restricted to motion in a two-dimensional plane. The Dirac 
crossing points are at energy ED. From Ohta et al. [52].
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former Dirac crossing point. Provided that the charge state is such that the Fermi level lies 

within the gap, a semimetal-to-insulator transition occurs (as an interesting aside, if this 

symmetry breaking could be controlled externally, the electronic conductivity would change 

through this transition, suggesting that a switch with a thickness of two atomic layers could be 

constructed). 

This effect of layer inequivalence on the band structure can be measured using angle-

resolved photoemission from bilayer graphene.  Because the SiC valence band edge lies about 

2.6 eV below EF and the conduction band edge about 0.4 eV above EF (Figure 4, [78]), the 

SiC states are well separated from both EF and ED, and the bilayer graphene states can be 

regarded as practically decoupled from the substrate. The symmetry of the bilayers is then 

broken by the dipole field created by the difference in charge in the interface region of the top 

SiC and (6√3 x 6√3) R30° layer and the accumulation of charge on the first graphene layer 

next to the interface, rendering the two graphene layers inequivalent with respect to charge 

and electrostatic potential. We can induce further n-type doping by the depositing alkali metal 

atoms, in this case potassium, onto the second graphene layer on the vacuum side, which 

donate their lone valence electrons to the surface layer, forming another dipole.  These surface 

and interface dipole fields act as the symmetry-breaking factor, which controls the presence or 

absence of the gap at the crossing energy ED [Fig. 10 b and c)]. The net dipole field between 

the two graphene layers results from the short screening length (about 4 Å) along the c axis, 

which is comparable to the layer thickness (3.4 Å). A similar charge localization has been 

observed at the surface of graphite and graphene multilayers in an externally applied field 

[100,115]. The binding energy – momentum dispersion relation of π, π*, and σ states along 

high-symmetry directions measured by ARPES in Figure 11 exhibits a ~0.4-eV splitting of the 

π state, confirming that the sample is composed predominantly of two graphene layers; as 

shown in studies of film morphology, graphene on silicon carbide exhibits a mixture of layer 

thicknesses, with one being dominant, a process that can be optimized through a careful 
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annealing process [81]. The constant-energy contours in momentum space of π and π* states 

near EF (Fig. 11 D to F), show the presence of the electron and hole pockets above and below 

the Dirac point, which can be seen here because the n-type doping pulls ED below the Fermi 

level. In the constant energy plots, six weak replicas of the π and π* states surrounding the 

primary states can be seen, as (rather faint) points around the upper spot in Figure 11 E, and as 

roughly triangular shapes  in Fig. 11 F, arranged in a hexagonal manner. As shown in Figure 2, 

low energy electron diffraction shows that graphene layers grown on the SiC substrate display 

a nearly commensurate superstructure with relative lattice constant  6√3 x 6√3 rotated by 30° 

with respect to the substrate because of the difference between the graphene lattice constant of 

2.46Å  and that of SiC, 3.07 Å [22]. The replicas of the π and π* states are brought about by 

scattering off of this superstructure in a fashion similar to those in other nearly 

incommensurate systems.  What is also apparent in Figure 11 F is the deviation from the 

   Figure 11: Energy-momentum dispersion relation of p, p*, and s states of bilayer 

graphene. (A to C) Energy-momentum dispersion along high-symmetry directions. (D to F) 
Constant energy contours at EF, EF –0.4 eV = ED, and EF –2 eV. The high symmetry points, 
directions, and Brillouin zone boundaries are indicated in (D). From Ohta et al., [54].
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conical dispersion, the so-called trigonal distortion or warping, at an energy well below the 

Dirac point. 

The effects of doping the bilayers are shown in Fig. 12, which compares the as-prepared 

film to coverages of potassium. There is a  rigid shift of the π and π* states (investigated in 

detail by Kihlgren et al. [116], who showed that his also applies to the σ bands) towards 

higher binding energy because of an increased carrier concentration. The upper unoccupied 

π* state drops below EF at a charge density of  0.0125 electron per unit cell and continues 

dropping down with higher potassium coverage; because of the simple band structure of 

graphene, the electron carrier densities of each stage can be determined from the relative sizes 

of the Fermi surfaces with respect to the surface Brillouin zone of graphite.  Plotted next to 

the intensity maps are calculated tight-binding bands (solid lines) [109], where the low-lying 

electronic states near the K point of the Brillouin zone are described by the solution of a 

simple 4 x 4 Hamiltonian as  
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where the band index α = 1,2 and 
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Here k is the momentum in Å-1, φ is the azimuthal angle, v is the band velocity (m/s x   

€ 

h x 

1010), U is the difference in the onsite Coulomb potentials of the two layers, γ1 (eV) and γ3 

(eV) are out-of-plane nearest-neighbor and next–nearest neighbor interaction parameters, and 

a (Å) is the graphite lattice constant. These are adjusted to reproduce the measured band 

structures over a large energy range. U is chosen to match the gap at the K point. The most 

important observation in the data in Figure 12 is the variation in the apparent gap at the K 
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point: there is a clear gap in the clean bilayer spectrum, which closes at higher doping, and 

finally opens again. This gap variation is reproduced by the tight-binding calculation and is 

attributed to the variation in the relative potentials of the two layers as schematically shown in 

the bottom of Figure 12: initially, the first graphene layer near the interface has a larger carrier 

density than the top (surface) layer. At intermediate coverages of potassium, charge transfer to 

the surface layer causes the charge densities to be equal, such that the gap closes, as 

schematically shown in Figure 10. At higher coverages of potassium, the surface layer now 

has a higher carrier concentration such that the layers become inequivalent again, leading to a 

reopening of the gap. Away from the K point, the gap is generally smaller than the prediction 

because the cusps extending into the gap between the π and π* bands are much sharper than 

in the model. As a result, the gap for the uncovered film is not clearly resolved, although a 

shift of the bands is readily apparent from the flattening of the p* band edge and the lack of 

spectral weight at ED. Sufficient asymmetry is developed for higher doping that the gap is 

unambiguously open. 

Data from many different coverages are combined in the display of photoemission spectra 

at the K point as a function of doping, in order to systematically follow the evolution of the 

gap between π and π* states [Fig. 13a]. The blue markers are the positions of the tight-binding 

π and π* bands. The data and calculated energies of the π and π* states clearly display the 

closing and reopening of the gap. The yellow line is the energy difference EF – ED, which 

increases by about 0.32 eV with respect to the as-grown sample, reflecting the overall doping 

level of the film. The modeling of the experimental data on the basis of the tight-binding 

offers the interesting possibility to study the influence of carrier concentration; this is shown 

in Figure 13B, where the Coulomb potential difference U between the two layers and the 

nearest neighbor interaction parameter γ1 are shown as a function of doping level.  U displays 

a sign change at the electron concentration where the gap closes. It is expected that U 

increases with an increase of the charge difference in either graphene layer, induced by the 
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fields at the respective interfaces. The potential of each graphene layer is estimated from 

Poisson’s equation, based on the Schottky barrier height of 0.4 eV [78], assuming infinitely 

thick graphene multilayers. For the as-prepared sample, the potential difference between the 

first and second layers shows reasonable agreement with the Coulomb potential difference U 

estimated from the size of the gap evaluated in the tight-binding model. A monotonic increase 

is seen in γ1, which measures the interlayer interaction as a function of electron concentration 

in both layers. This suggests that at higher electron density, the overlap between  orbitals of 

adjacent graphene layers increases. This may be due to the smaller interlayer distance caused 

by a shorter screening length. By controlling the carrier density in a bilayer of graphene, the 

occupation of electronic states near EF and the magnitude of the gap between the valence and 

conduction bands can thus be manipulated. We have chosen a chemical way as a means of 

achieving this, i.e. potassium doping, but the switching functionality may be readily induced 

 

Figure 13: Variation of states at the K point with increasing potassium coverage. (A) The 
image map shows the energy distribution curve at K as a function of potassium coverage. 
The blue markers are the fitted positions of the tight-binding π and π* bands, and the yellow 
line indicates ED. The closing and reopening of the gap between π and π*  states are clearly 
shown. (B) The influence of doping concentration on the band parameters U and γ1. From 
Ohta et al. [52].
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by an electric field across the bilayer in a device structure, in such a way that the potentials on 

either layer have opposite sign [21]. Note, however, that for a switching functionality to work 

in a transport device, the gap opening needs to be located at or near the Fermi level; it appears 

that this has now been achieved in a double gate device configuration [117].   

The adsorption of alkali metal atoms is an efficient process to induce (enhanced) n-type 

doping into the graphene layers; however, it is desirable to be able to induce p-type doping 

also, for example in order to prepare graphene films on silicon carbide in which the Fermi 

level coincides with the Dirac point, or to prepare (as yet hypothetical) 2D laterally 

 39 

Figure 12: Closing and opening of the band gap in bilayer graphene induced by potassium 
adsorption. The left panel shows the as-prepared bilayer on SiC(0001). Charge transfer into 
the bottom layer gives rise to different on-site Coulomb potentials E1 > E2 which results in a 
band gap. Doping of the top layer by potassium adsorption reduces the difference between 
the onsite potentials. If E1 = E2 the gap is closed. Further K dosing increases the potential 
difference again, which reopens the gap (see also schematic drawing in Figure 10. The 
increasing shift of ED below EF is due to the increasing occupation of the π*-bands. From 
Seyller et al. [47].



inhomogeneous  structures, in which regions of n- and p-type vary. P-type doping has recently 

been achieved by the deposition of sub-monolayer quantities of bismuth, antimony and gold 

[118], and through adsorption of NO2 [119,120]; it has also been studied theoretically, and 

experimentally using transport measurements in graphene flakes [121], and the chemically 

induced change of contact potential has been applied to use graphene as a most sensitive 

chemical sensor [122]. Consider the set of photoemission images from a graphene layer 

prepared on SiC(0001) in Figure 14. The clean surface exhibits the Dirac crossing point of the 

π bands at about 0.45 eV below EF, i.e. the normal n-type doping found in this system; this 

doping was first observed by Rollings [64], and has also been predicted theoretically [68,123]. 

Depositing 0.28 monolayers of bismuth per graphene unit cell moves the Dirac point up by 

about 0.1 eV, and with subsequent depositions a situation is reached (Figure 14 c) where it is 

located about 0.2 eV below EF. While bismuth and antimony are only able to compensate the 

substrate-induced n-type doping to some extent, gold can drive the Dirac point to about 100 

meV above EF, i.e. into the real p-type doping as shown in Figure 14 d. Upon NO2 doping, the 

Fermi energy can be shifted even more strongly, by as much as 0.8 eV, and the charge carriers 

can be tuned in a wide range from 0.7  x 1013 cm2 electrons to 1.2 x 1013 cm2 holes; moreover, 

this change is reversible when NO2 is desorbed either through the impact of high energy 

photons, or high temperature annealing to desorb the NO2 molecules. The Fermi velocity is 

found to be nearly constant for all doping levels to within  20% of the initial value [120].

5. The band structure of single layer graphene: many-body effects  

So far, we have restricted the discussion of the electronic structure of single and few layer 

graphene to a single particle interpretation of the band structure in terms of tight-binding 

bands, for example. This view neglects many body effects which play a role, to a larger or 

lesser degree, in a real solid. With the recent discovery of superconductivity in carbon 
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nanotubes [124], alkaline-metal-doped C60 crystals [125] and graphite intercalation 

compounds [126] with relatively high transition temperatures, there is a strong interest in the 

influence of many-body interactions on the electron dynamics in carbon-based systems. 

Graphene, as the building block for all of these materials, is therefore a model system for this 

entire family also in this respect. These interactions are especially interesting owing to the 

effectively massless, relativistic nature of the charge carriers following from the formal 

equivalence of the Schrödinger wave equation to the relativistic Dirac equation for graphene 

as discussed in detail in the preceding sections. Angle-resolved photoemission is particularly 

well suited to the study the details of many-body interactions in solids, since it gives access 

not only to the group velocity and Fermi surface, but also to the constant-energy surfaces for 

all occupied states and the full occupied band structure E(k). Recent advances in spectral 

resolution and the ability to map the distribution of photoemission intensities in energy and 

momentum space have led to the development of angle resolved photoemission as a tool of 

central importance in the study of many body processes in solids.  Soon after the technical 

development of imaging detectors, it was shown that the scattering rate in solids can be 

extracted from the so-called momentum distribution curves (MDC), i.e. angle-resolved 

photoemission intensity plotted as a function of momentum at fixed energy. This technique, 

proposed by the Brookhaven group [127] is particularly elegant, and much of the modern high 

resolution photoemission work of self energy effects and mass renormalization have their 

origins in their groundbreaking study.

The electronic properties of solids are determined by the quantum states of the conduction 

electrons. Band theory such as used above for the description of the π bands in single and few 

layer graphene traditionally only accounts for their interaction with the static ion lattice. 

However, coupling to further microscopic degrees of freedom can alter the electron dynamics 

and even lead to new many-body ground states not foreseen in that picture. A prominent 

example is the interaction with lattice vibrations (phonons) [128], which enhances the 
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effective electron mass on the corresponding energy scale and can lead to conventional 

superconductivity. Interaction of conduction electrons with elementary excitations leads to a 

change (“renormalization”) of electronic energies, i.e. to deviations of their band dispersion 

from that expected for the non-interacting case. At low binding energies, the electrons become 

“dressed” by excitations, thereby forming quasiparticles of increased mass. As illustrated in 

Fig. 15 a) [129], this is reflected in a reduced slope of the electron band, which is inversely 

proportional to the electron mass. Beyond the characteristic energy scale ω0 of the coupled 

excitations, the electrons resume their non-coupling band dispersion. Quasiparticle formation 

due to interaction with phonons as depicted in Fig. 15b has been reported by angle-resolved 

photoelectron spectroscopy (ARPES) [130,131] and is intensely investigated (and debated) in 

the context of the search for the origins of high temperature superconductivity [132] .
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Figure 14. Experimental band structure of single layer epitaxial graphene doped with bismuth 
and gold atoms. (a) pristine graphene layer, b,c) increasing amounts of bismuth atoms. d) p-
type doping induced by a layer of gold with a coverage of two atoms per unit cell of 
graphene. From Gierz et al. [118].



Under conditions of sufficient energy and momentum resolution, the experimentally 

determined spectral width of the photoemission contours can be taken to be the inverse of the 

mean free path, and the experimentally determined E(k) is taken as a measure of the many-

body spectral function A(k,ω). This spectral function is in turn related to the electronic self-

energy Σ(k,w) through
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A(k,ω)  =  
ImΣ(k,ω)

(ω −ωb (k) −ReΣ(k,ω))2 + (ImΣ(k,w))2
	

 	

 (11) 

(see Ref. [133] and references therein). Here ω is the measured binding energy and ωb(k) is 

the “bare band” dispersion defined below (in eq. (11),   

€ 

h  = 1). Here the approximation is made 

that Σ(k,ω) is k-independent. In this form, one can show that A(k, ω), when evaluated at 

constant energy ω, is a Lorentzian function whose width is given by ImΣ representing the 

Figure 15: Schematic display of quasiparticle formation. a )The electron is dressed with the 
excitation up to an energy ω0 below the Fermi energy, leading to a mass enhancement. b) 
Electron–phonon coupling implies a distortion of the crystal lattice surrounding the electron. 
From Schaefer et al., [128]
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inverse lifetime (proportional to the inverse mean free path). Equation 11 is valid when the 

scattering rate of the charge carriers (expressed in energy units) is not too large compared to 

their energy. The charge carriers are then referred to as quasiparticles (QPs); in our 

measurements, the QPs are holes which have been injected as part of the photoemission 

process. 

One can draw an analogy between QPs propagating in a scattering medium and light 

traveling in a lossy optical medium [32]. Such a medium is characterized by a complex 

dielectric function, and the effects on the light propagation are not only through its absorption 

but also a dispersion. To satisfy causality, the real and imaginary parts of the dielectric 

function are related by a Kramers-Kronig (Hilbert) transformation. Similarly, the propagation 

of QPs in a scattering medium leads not only to inelastic scattering (whose lifetime is 

contained in the imaginary part of Σ) but also renormalization of the carrier’s energy, 

contained in the real part of Σ (k, ω). These real and imaginary parts of Σ (k, ω) are also 

related by a Hilbert transform, and the function Re Σ (k, ω) is defined as the difference 

between the measured carrier energy ω and the “bare” band energy ωb(k) (that is, in the 

absence of scattering interactions), as indicated in Eq. 11. 

Following this formalism, ARPES can determine the energy-dependent lifetime due to 

scattering from other excitations in the system [134]. Moreover, the coupling among 

quasiparticles can be evaluated, a process which is fundamental towards understanding 

superconductivity, for example. 

The analysis focuses in particular on the interaction of the carriers with-electron–hole pair 

excitations within the Fermi-liquid model, and with plasmons. Departure of the electron 

dynamics from Fermi liquid behavior in graphite has already been attributed to the special 

shape of the graphene band structure [97,135,136], whereas electron-plasmon scattering has 
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been proposed as a key coupling process in superconductivity in general [137], and of the 

cuprates in particular [138]. Angle-resolved photoemission spectroscopy (ARPES) can probe 

the scattering rate at different energy scales, and therefore can access these many-body 

couplings directly [132]. For undoped graphene, the Fermi energy EF lies at the Dirac point 

ED, and many of the interesting properties of graphene arise from the fact that the band 

crossing at ED has no gap, a fact that is amply demonstrated in transport experiments [1,110].  

Upon doping the graphene by either deposition of foreign atoms [41,52,53], molecules [120], 

[121] or in a gated geometry [1,21,110], the carrier density can be easily manipulated. With 

this control, one can systematically study the many-body interactions in graphene as a 

function of doping. While transport measurements on doped graphene can determine the 

Figure 16. Experimental Fermi surfaces (left) and band structures (middle, right) for (a) as-
prepared monolayer graphene and (b) graphene dosed with K atoms. The middle and 
right panels are taken along orthogonal directions through the K point as indicated, i.e. 
along kx at constant ky = 0 and vice versa.. The doping levels in electrons per cm2 are 
indicated. The phonon kinks at ~200 meV are indicated by arrows. From Bostwick et al., 
[32].
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relevant properties such as group velocity and lifetime of carriers on the Fermi surface, which 

is defined as the contour E(k) taken at the Fermi energy, angle-resolved photoemission 

spectroscopy (ARPES) is a complementary tool giving access to the entire electronic band 

structure as demonstrated in the previous sections. As shown there, angle resolved 

photoemission also gives a very precise determination of  graphene film thickness, because of 

the distinct signatures of the single and few layer graphene band structure [54]. 

The detailed spectral function by ARPES from graphene was reported by Bostwick et al. 

[53] and showed rich spectral features.  As discussed in section 2, the formation of graphene 

on SiC(0001) proceeds through a (6 √3 × 6 √3) R 30° reconstruction at the graphite-SiC 

interface, a non-interacting “0th” graphene layer whose electronic structure resembles 

graphene only insofar as it has an intact σ-like bands (derived from sp2-hybridized in-plane 

bonds) but lacking the π bands characteristic of the out-of-plane pz states of graphene (cf. 

Figure 4). The presence of such a zeroth layer is important because it saturates the underlying 

SiC dangling bonds while forming a template for a subsequent first graphene overlayer. From 

symmetry considerations, it is known that the π bands from the latter and the σ bands of the 

former cannot interact. Therefore, the chemical interaction of the first graphene layer with the 

substrate is very weak, and the π bands of graphene on SiC are to a very good approximation 

the same as those of free-standing graphene. 

As discussed in the preceding sections, the conical band structure E(k)= vk near the K 

point of the Brillouin zone is directly mapped in photoemission as shown in Figure 6, for 

example. Let us now examine this region of the bands in more detail, and take a look at the 

Fermi surface (left diagram of Figure 16 a) [32]. The increase in diameter of the latter as the 

n-type doping is increased by adsorption of potassium (lower panel) is obvious, and this is a 

method for estimating the coverage based on the assumption that each K atom gives up its 

valence electron. One immediately recognizes the expected nearly linear dispersion as well as 
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the Dirac crossing point (middle panels) in the bands at the Dirac energy ED. There is also a 

nontrivial change in band intensity when traversing around the Fermi contour. Because of this 

effect, when one samples the band structure in the ky-direction, only one of the two expected 

bands is observed; the other is extinguished (right panels; see also Figure 6). This asymmetry 

in constant-energy angular maps of photoemission reflects the chirality of charge carriers in 

graphene; it does this in a manner that can be evaluated quantitatively to investigate the 

strength of symmetry-breaking effects produced by the underlying substrate, or by doping in 

the bilayer [139], a subject that is discussed in more detail at the end of this section.

An important feature of single layer graphene data is the appearance of kinks in the energy 

band structure below EF [53]. These kinks occur at two energy scales. First, a slight kink at 

∼200 meV below EF, which is hardly visible on the large energy scale plotted in Figure 16, 

but is accompanied by pronounced sharpening between 200 meV and EF, is evident from the 

data displayed in a false color scale. This kink is similar to ones which have been observed at 

such an energy scale in graphite [104,140] and bilayer graphene as shown above, and have 

been attributed to electron-phonon scattering. The occurrence of the kink was discussed 

within the spectral function formalism in eq. 11 and depicted in Figure 15. There is an 

observable increase in line width of the band at binding energies greater than 200 meV, 

signifying a decrease in the lifetime of the states as electrons absorb or emit phonons. This 

interpretation is based on two observations: first, because of the energy scale, which 

corresponds to the in-plane LO and TO phonons of graphene [53], and second, because the 

kink feature’s energy scale remains constant with doping, as expected for the small doping 

levels considered here. 

 Second, it is obvious from the data in the upper panels, where both bands have equal 

intensity, that the region of the crossing of the bands seems spread out in energy. In the lower 

panels, where one band is extinguished, it appears that this spread is associated with a second 
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kink feature which is at the Dirac crossing point of the bands. Unlike the phonon kink, this 

anomaly moves to higher binding energy with doping, and must therefore be somehow 

associated with the Dirac energy ED. It is stronger at higher doping, and is associated with a 

change in line width—the bands are locally broadened around ED [32]. 

The deviations from the bare band are sensitive to doping as shown in Fig. 17 b–d and 

along the orthogonal direction in Fig. 17 f – h. Similar to graphite, doping graphene by K 

deposition shifts the bands more or less rigidly to higher binding energy. Whereas the energy 

of the kink at 200 meV does not change, the deeper-energy kink strengthens and follows ED 

with doping, demonstrating that it is associated with electrons with an energy near ED.  In 

order to provide an interpretation of the entire spectral region within the range of binding 

energies from EF to about 1 eV below EF, Bostwick and coworkers [53] analyzed the 

experimental data within the the k-independent approximation [133,141], where ImΣ(ω) is 

proportional to the Lorentzian line width of the momentum distribution curve (MDC) taken at 
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Figure 17: The band structure of graphene near the Fermi Level. (a)–(d) Experimental 
energy bands along the vertical double-arrow in the inset as a function of doping. The 
dashed lines are an extrapolation of the lower bands (below the Dirac crossing energy ED). 
The electron density (charge per cm2) is indicated on each panel. (e)–(h) Band maps for 
similar dopings acquired along the horizontal double arrow in the inset. The non-linear, or 
“kinked” dispersion of the bands is evident from the fitted band position (dotted lines). From 
Bostwick et al. [53].



constant energy ω. ReΣ(ω) is computed from ImΣ(ω) through a Hilbert transform, and the 

full spectral function A(k,ω) is reconstructed using the computed ReΣ(ω) and compared with 

experiment.  In order to find out whether such a procedure can be carried out  self-

consistently, it should first be established that the kinks in the bands and the linewidth 

variations are consistent with each other.  Figure 17 d) and h) and Figure 18 a) show an 

experimentally acquired spectral function A(k, ω) for relatively highly doped graphene (n = 

5.6 x 1013 cm−2). The band positions ω = ωb(k) + Re (k, ω) are determined by fitting MDCs 

(i.e. individual constant-energy slices) to Lorentzian functions. The positions are plotted in 

Figure 18 a) (black line).

In order to converge to a self-consistent interpretation, the authors adopt the following 

procedure: a second-order polynomial is taken as a trial bare band ωb(k). Given this ωb(k), the 

MDC widths (units of Å-1) are transformed into the function Im Σ(k, ω) (units of eV). This 

function is smoothed and then Hilbert transformed into a trial Re Σ(k, ω) function. Re (k, ω) 

can also be obtained by subtracting the trial bare band from the fitted band position. These 

two Re Σ(k, ω) functions can then be compared and the trial bare band adjusted until the 

models Re Σ (k, ω) and Im Σ(k, ω) are in good agreement with the experimentally extracted 

curves; for details see [32,53]. As a check of self-consistency, a trial spectral function A(k, ω) 

can be generated from only the fitted MDC widths and the mathematically transformed Re Σ

(k, ω), shown in figure 18 b). It is in excellent agreement with the experimentally determined 

function in Figure 18 a). 

This self-consistency gives confidence that all kinks in the bands originate from many-

body interactions as contained within the spectral function, and not from details of the single 

particle band structure. The observed kink structure must therefore be assigned to an energy-

dependence of the observed scattering rate, which is proportional to the measured MDC line 

widths. To interpret these data, the authors consider three processes: decay of the carriers by 
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electron–phonon (e–ph) coupling, by electron–hole (e–h) pair generation and by emission of 

collective charge excitations (plasmons) through electron–plasmon (e–pl) coupling. The 

experimental scattering rate and its contribution to ImΣ(k, ω), determined from the width of 

the peak in the momentum distribution curve, is shown as the red dots in Figure 19 d. From 

the shape of the experimental scattering rate curve, there are four regions of interest I - IV: (I) 

the phonon energy scale ωph< ω < 0, (II) the Dirac energy scale ωD< ω < 0, (III) 2ωD< ω 

<ωD,  and (IV) ω < 2ωD.

First, the kink near EF (region I) is attributed to electron–phonon coupling as described 

previously for metals [127,130,142], and for bulk graphite [104]. In this process, photoholes 

decay by phonon emission (see also Figure 15) . From graphite’s phonon density of states 

[143], the e–ph contribution to the scattering rate and thus ImΣ ,(green curve in Figure 19 d) 

is calculated [128] and an e–ph coupling constant λ ≈ 0.3 is found. Although this is a factor of 

five larger than predicted [144] for n = 5.6 x 1013 cm−2, comparison with the experimental 

data shows that this provides an accurate description  of ImΣ in region I (for details see [53]). 

The observed increase of the kink’s strength with n (see Fig. 17 e–h) is expected from the 

increase in the size of the Fermi surface, although the 200 meV energy scale remains constant 

because the K atoms are not likely to alter the phonon band structure at this energy. 

Consider now the decay of the photohole by excitation of an electron from below to above 

EF, thereby creating an e–h pair. In Landau’s Fermi-liquid theory, the scattering rate from such 

processes increases proportional to ω2 away from ω = 0, reflecting the growing number of 

possible excitations that satisfy momentum and energy conservation. However, the linear 

dispersion of the graphene bands and the presence of the Dirac crossing below EF drastically 

modify this picture [145]. A hole just above ED can easily decay through many possible e–h 

creation events, for example, as shown schematically in Fig. 19 b), and an ωα (α ∼ 1.5) 

dependence of ImΣ(k,ω) is found in regions I–II. In Fermi-liquid theory for 3D solids, α = 2 
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is derived, and for a 2D solid where a dependence ω2lnω was predicted [146,147]. The 

influence of the unique band structure on quasiparticle scattering rates in graphene was 

analyzed by several groups [135,148-151]. The situation is quite different from a normal 2D 

electron gas since a hole originating at ω just below ED has few possible decays with 

sufficient momentum transfer to excite an e–h pair [Fig. 18c]. This causes a sharp reduction in 

the scattering rate in region III, seen in the red curve in Fig. 19 d) . Only for energies ω larger 

than approximately 2ωD, region IV, does e–h pair generation become favorable again. The 

electron–electron and electron–phonon processes can explain the observed MDC widths in 

regions I, II and IV. In region III, however, decay by e–h pair creation is virtually not allowed, 

yet the observed scattering rate has a peak rather than a dip (experimental data in Fig. 19). 
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Figure 18. Spectral function of doped graphene. (a) The experimentally determined spectral 
function for graphene doped with K atoms (total doping n = 5.6 x 1013 cm−2). The solid line is 
the fitted band position ωb(k) + Re Σ(k, ω), the dotted line is the bare band ωb(k). 
(b) A model spectral function generated using only the measured Im (k, ω) and the bare 
band ωb(k). Adapted from Bostwick et al. [53].



This peak may be explained by decay through plasmon emission, i.e. oscillations of the 

electron gas.
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Figure 19: Possible many-body decay process in n-doped graphene. (a) decay  by electron–
phonon emission (b) decay by electron–plasmon emission (c) decay by electron–hole pair 
generation. d) Measured spectral linewidth of peaks in MDCs for graphene (red dots), 
derived by performing a line shape analysis for each binding energy. The simulated total 
scattering contribution (black line) and the partial contributions due to decay into phonons 
(green), electron-hole pairs (red) and plasmons (blue) are calculated for the specific doping. 
These interactions contribute differently in regions I-IV defined as follows: (I) the phonon 
energy scale ωph< ω < 0, (II) the Dirac energy scale ωD< ω < 0, (III) 2ωD< ω <ωD, (IV) ω < 
2ωD. Adapted from Bostwick et al. [53].



In graphene, the charge carriers near the K point have zero effective mass and travel like 

photons at constant speed c∗, but unlike photons they have charge and are therefore subject to 

collective oscillations such as plasmons. Although a full treatment of the electron–plasmon 

interaction is difficult near the Dirac point, a simple model suffices to explain how electron–

plasmon coupling can enhance the scattering rate below ED. Two-dimensional plasmons have 

a dispersion relationship

ωpl(q)=4πne2q/m(1+ε)   (12)

where q is the plasmon momentum, e is the electron charge, m is the effective carrier mass 

and ε is the dielectric constant. For graphene, the rest mass m0 is zero near ED, but the 

‘relativistic mass’ mr = E/c2 depends on the doping, reaching a maximum of only 10% of the 

free-electron rest mass for our samples; this has the notable effect of increasing the plasmon 

energy ωpl(q) [53]. Collective plasmon excitations are not really independent of the e–h pair 

excitations, and therefore decay by plasmon scattering is a valid description only outside the 

range of kinematically allowed e–h processes, which only occurs for decay processes with ω 

∼ ED and q ∼ 0 (as in Fig. 19b), when the plasmon spectrum does not overlap the continuum 

of e–h excitations. This means that plasmons may have a large effect on the self-energy 

around ω∼ωD. Using the plasmon dispersion relation, the possible plasmon decays as a 

function of ω (Fig. 19 d, blue curve), which is proportional to the scattering rate, can be 

calculated. This leads to a peak in ImΣ located just below ED, whose width and intensity 

scales with ED, as clearly observed in the experimental data. The three principal decay 

processes (e–h, e–pl, and e–ph) contribute differently to the lifetime in regions I–IV as 

identified in the traces in the upper part of Fig. 19 d, calculated for a sample with n = 5.6 x 

1013 cm−2, and compares favorably with the experimental MDC width; the predicted dip at ED 

is an artefact of the simplicity of the model, which does not consider interactions between the 

plasmons and the Fermi-liquid excitations.  Considering the influence of the three  principal 
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decay processes, i.e. electron–hole excitations, electron–plasmon and electron–phonon 

scattering thus gives a consistent explanation of the shape of the dispersion curve and the 

trends in the experimental scattering rates. Plasmons have been identified in scanning 

tunneling spectroscopy of graphene [143], and in a recent first-principles study of 

quasiparticle line widths, Park and coworkers have considered the influence of these processes 

and found good agreement between their theoretical results [152] and the experimental data 

discussed above.

The analysis of the scattering rate near the Dirac point in terms of electron-plasmon 

scattering by Bostwick et al. has recently been put in question by Zhou et al [153], who 

proposed that the observed spreading of the bands around ED is associated with substrate 

dependent energy gap at ED. Such a gap would be interesting because it suggests an electronic 

or chemical control of the electronic character (2D semimetal vs. semiconductor) and is 

proposed on the basis of possible symmetry breaking. A physical interpretation of this gap is 

the symmetry breaking of the A and B atoms. This occurs for the replacement of C atoms with 

B and N in hexagonal boron nitride, for example, creating a gap of about 5 eV. It also occurs 

in a scenario where the bonding of A and B atoms to the zeroth layer is asymmetric. Zhou and 

coworkers have recently interpreted their angle-resolved photoemission data from monolayer 

graphene in terms of the opening of a gap between the lower and upper part of the π bands, 

i.e. below and above the Dirac point [153]; they assert that chemical bonds between the 

graphene film and the substrate break the ‘A–B’ symmetry of the graphene lattice. As 

discussed by Bostwick et al. [32] and Rotenberg et al. [154], there are several reasons why the 

presence of a gap appears most unlikely. First, the interaction between the 1st and 0th layer is 

very weak, as established by photoemission [55], theory [155,156], and STM [68]. Moreover, 

the doping dependence shows a clear increase in the spread of the states at the Dirac crossing. 

If this spread were due to a gap from coupling to the substrate, the coupling strength should 

be independent of the doping density (or become smaller due to enhanced screening). Also, 
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the bands above and below ED are misaligned [52]. This misalignment does not occur in the 

energy gap scenario, but comes naturally when many-body interactions are present. The 

energy distribution curve (EDC) at the Dirac crossing shows only a single peak, not a split 

peak as expected in a gap scenario (see Fig. 5 in ref. [32]). 

As an alternative explanation for the different interpretations of the spectral data by Zhou 

et al., and the data presented above, Rotenberg et al. [154] have recently compared spectra of 

a complete monolayer with those of submonolayer coverages, where small islands of 

graphene are known to exist from STM and LEEM data [81]. They relate the findings of Zhou 

et al. to the presence of defects and islands of graphene readily prepared by underannealing. 

Such films display not only the split or ‘gapped’ EDC spectrum at K., but also a significant 

broadening and an elevated diffuse background in the Fermi-level MDCs. Other experimental 

observations also suggest that such samples are islanded (see Figure 1 in ref [154]). This is 

also supported by electron microscopy showing an inhomogeneous distribution of small 

irregular graphene islands, features which can easily explain the data of Zhou and coworkers.

The intensity distribution along the Fermi surface such as shown in Figure 20, where 

photoemission intensity on one side of the Fermi contours is very weak or absent, provides a 

more stringent test for A-B atom symmetry breaking. The Hamiltonian of one layer of 

graphene near the K point of the Brillouin zone can be approximated [12,109,157,158] by 

€ 

H  =  
E1 + Δ /2 v(kx − iky )
v(kx + iky ) E1 −Δ /2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   

          (13)

where the wave functions Ψ = (ψA , ψB ) are written in terms of pz orbitals centred on the 

A and B atoms in the graphene basis set. The parameter Δ represents a possible asymmetry 

between the A and B sites. For ordinary graphene, Δ = 0 since the atoms are indistinguishable. 

The off-diagonal terms represent the hopping between A and B sublattices, and v is the band 

velocity around ED. The Hamiltonian in equation (13) leads to the by now well-known conical 
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band structure E(k) = vk when Δ = 0, where k is the momentum relative to one of the K 

points at the corner of the graphene Brillouin zone (see Figure 1). 

In the symmetric case Δ = 0, the intensity on one side of the Fermi contour is strictly zero. 

Rather than a simple vanishing photoemission matrix element, the cancellation results from 

the interference between emission from A and B sites. This cancellation, like the Dirac nature 

of the quasiparticles, and the lack of backscattering, follow from the A-B atom symmetry. If 

the A-B atom symmetry is broken, not only is a gap opened at ED (thereby destroying the 

massless character), but also the phase cancellation affecting the Fermi surface intensity is 

destroyed [92]. The magnitude of this effect is illustrated by the polar maps of the measured 

angular distribution of the band intensity taken about the K point for monolayer and bilayer 

graphene (closed and open circles, respectively) in Figure 20. These data were obtained by 

fitting the momentum distribution curves taken along radial cuts for an energy window ∼75 

meV below EF. For the monolayer, the band intensity is zero within a very low noise floor 

(about 0.15% as indicated by the central yellow circle).  Shirley derived a simple formula for 

the symmetric case Δ = 0 for monolayer graphene; an extension of this model is shown by the 

red lines in Figure 20, where the expected angular distributions for a  Δ = 0.0, 0.1 and 0.2 eV 

(leading to energy gaps at ED of the same values) is shown by the solid red lines. From a 

comparison of the intensity minimum (black data point) with the experimental noise floor 

(<0.015%) one can conservatively estimate the maximum gap at ED to be under 60 meV. 

Since the apparent kink at ED (with a resulting spreading of the states there) is much wider in 

energy than this, symmetry breaking as being the dominant factor to explain the anomalous 

dispersion at ED can be ruled out.

6. Conclusions and outlook 

The “rise of  graphene” [4] has taken the scientific world by surprise, and rarely has a new 

material come along that has both fundamental interest and a wealth of possible practical 
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applications, Graphene has been named “the simplest complex material” [32], and is unique in 

many ways, being truly 2-dimensional, having massless “Dirac Fermion” carriers, and 

combining properties of metals and semiconductors. Graphene brings together quantum 

electrodynamics issues and condensed matter physics, opening up new experiments in both 

fields. A fascinating aspect of research is that graphene can be modified by controlling the 

number of layers, by chemical doping, external fields, and its geometry. Moreover, graphene 

can be easily investigated experimentally using transport methods (with a particularly low 

entry barrier, since its preparation does not require complex laboratory equipment), and the 

tools of modern surface and interface science such as scanning probe techniques, electron 

microscopy, electron diffraction, and photoelectron spectroscopy, since it is a true 2D system 

that is not buried inside a bulk structure [15]. Angle-resolved photoemission has a special role 
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Figure 20: (a) Polar plot of the intensity of the Fermi contours for monolayer (solid circles) 
and bilayer graphene (open circles), obtained by fitting momentum distribution curves 
(MDCs) taken along radial cuts through the K point of the Brillouin zone. The intensity scale is 
logarithmic. Also shown are theoretical intensities for asymmetry parameters  Δ = 0.0, 0.1 
and 0.2 eV (solid lines) using Shirleyʼs formalism [93]. The solid black data point is an upper 
limit based on the noise floor indicated by the central yellow circle. (b) The ratio of the 
weakest to strongest emission intensities as a function of asymmetry parameter . The noise 
floor (yellow region) establishes the maximum value of the asymmetry parameter ∼55 meV 
admitted by our measured intensity distribution. From Bostwick et al. [32].



to play in the investigation of graphene’s electronic structure, as documented in the preceding 

sections: it is sensitive not only to the valence band energy structure but also its symmetry in 

k-space, and can give direct information on the many-body interactions; in fact, it is a model 

system for correlation and many-body interactions for which adequate theories are still under 

development, and as such is one of the most versatile systems in condensed matter physics. 

As documented in this review, the basic aspects of the electronic structure of single and 

few layer graphene are quite well understood, and can be modeled on the basis of band 

structure calculations. With respect to many body processes, more work is clearly required, 

relating to the coupling of quasiparticles to different excitations on the bilayer, the effect of 

disorder, and how these modify the physical properties oh graphene. A most interesting 

aspect, and one in which the techniques of surface and interface science are particularly 

important, is the effect of chemical modification of graphene, i.e. by adsorption, substitution 

or intercalation. Doping effects may change the chemical potential as discussed above, while 

adsorbed species that strongly interact with the graphene lattice may lead to hybridization 

effects that induce a considerable modification in the electronic structure. The introduction of 

d- and f-metal atoms, for example, may have a strong influence on electron-electron 

interaction and lead to magnetic effects. An almost uncharted territory experimentally is the 

effect of confinement in one-dimensional (“nano-ribbons”) and zero-dimensional (quantum 

dots) graphene structures. While the former seem to present some preparation difficulties, the 

latter exist in the form of large molecules [159] consisting of dozens of benzene rings that 

may be deposited on suitable substrates. In the context of edge states of low dimensional 

structures [160], functionalization through ligands of different kinds is another most 

interesting aspect, which may enhance a possible role of graphene as sensor in chemical 

environments.

Probably the most important aspect from a materials science and applications-oriented 
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point of view is the question of how to prepare large scale epitaxial graphene. Important 

progress has been made for graphene on silicon carbide [63] and on transition metals 

[161-163], and chemical means of preparing graphene coatings have been developed 

[164,165]; attempts to achieve large scale growth have recently been reviewed by Geim [8].  

An intense research effort is under way to improve these processes and develop new ones, and 

given the expertise available in the materials science of carbon-based materials rapid progress 

in this area can be expected. Research into the properties of graphene and its applications will 

remain a rewarding and exciting field of research for many years to come.
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